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Abstract—Although the native RDMA interface allows for
high throughput and low latency, its low-level abstraction raises
significant programming challenges. Consequently, numerous
systems encapsulate the RDMA interface into more user-friendly
high-level abstractions such as Socket, MPI, and RPC. However,
this ease of development often incurs considerable performance
degradation. To address this trade-off, this paper introduces
RB2, a high-performance RDMA-based Distributed Ring Buffer
(DRB). RB2 serves as a middle layer that effectively conceals the
low-level details of the RDMA interface while also facilitating
extension to other high-level abstractions.

Nonetheless, it is non-trivial for DRBs to preserve the RDMA
performance. We optimize the performance of RB2 in three as-
pects. First, we perform micro-benchmarks to identify the pointer
synchronization methods that are seemingly counter-intuitive but
offer optimal performance improvements. Second, we propose
an adaptive batching mechanism to alleviate the limitations
of conventional fixed batching. Finally, we build an efficient
memory subsystem using various optimization techniques. RB2

outperforms SOTA designs by achieving 2.5× to 7.5× throughput
while maintaining comparable tail latency for small messages.

I. INTRODUCTION

Remote Direct Memory Access (RDMA) has become an
essential part of data center infrastructure for high perfor-
mance. It enables direct access the memory at remote hosts,
which bypasses the host CPU, achieving high throughput
and low latency. However, there is a fundamental mismatch
between the native RDMA abstraction and the requirements of
contemporary data center applications. On the one hand, native
RDMA provides a low-level abstraction close to hardware
primitives. On the other hand, modern data center applications
are constructed upon high-level abstraction, such as remote
procedure call (RPC) library, message passing interface (MPI)
and socket abstraction. As a result, most systems [1]–[24]
further encapsulate the RDMA interface, which prevents them
from fully exploiting the high throughput and low latency
capabilities of RDMA hardware.

We observe that each common high-level abstraction has
one or more systems that use a distributed ring buffer (DRB)
as the internal implementation. This finding inspires us to
design a high-performance RDMA-based DRB, namely RB2,
serving as an infrastructure to support different types of high-
level abstraction. For abstraction, DRB is high-level enough
to hide the details of native RDMA APIs. At the same time,

*Qun Huang is the corresponding author.

DRB can be easily re-encapsulated to support more complex
abstractions (e.g. socket-like API [1]–[4], RPC library [5]–
[13], and MPI library [14]–[20]).

To ensure the high performance of RB2, we explore the
design space of DRBs to integrate the most performance-
beneficial design choices. However, compared to classical ring
buffers [25], the distributed operations (i.e., pointer synchro-
nization and message transmission) of DRBs raise challenges
to preserve the RDMA performance. (1) Pointer synchro-
nization plays a crucial role in DRBs, preventing the sender
from overwriting unprocessed messages or the receiver from
reading incomplete messages. There are numerous combina-
tions of head and tail synchronization methods, and the
batching mechanism is often used to minimize synchronization
overhead. Nevertheless, the intricate interplay between these
factors creates a complex influence on overall performance,
posing a challenge in designing a high-performance DRB.
(2) Although the batching mechanism can also increase the
throughput of message transmission, it simultaneously results
in idle bandwidth during waiting periods. Also, conventional
fixed batching lacks the adaptability to dynamic network
scenarios. (3) For memory operations within the message
transmission, the introduction of the middle layer inevitably
amplifies memory access and cache misses, necessitating
efficient memory management to ensure optimal performance.

To this end, we make the following efforts to address the
above challenges.
• For pointer synchronization (§IV-A), we conduct a micro-

benchmark to compare various combinations and discern
the optimal design choices. In particular, RB2 synchronizes
head and tail via lazy push and write twice, respectively.
For lazy push, the receiver pushes the latest head to the
sender after it processes a certain number of messages.
Write twice assures that the advancement of the tail (2nd

WRITE) only happens after the completion of the message
transmission (1st WRITE). This design choice appears coun-
terintuitive, requiring two RDMA requests to transfer one
message, but it offers optimal performance benefits.

• For batching mechanism (§IV-B), RB2 proposes adaptive
batching, consisting of synchronization-ahead transmission
and elastic threshold, to alleviate the limitations of com-
mon fixed batching. For synchronization-ahead transmis-
sion, RB2 transmits several small groups of batched mes-
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sages before the pointer synchronization, which exploits
idle bandwidth during batching waiting time. For elastic
threshold, RB2 delays the pointer advancement until the
completion of the previous pointer synchronization opera-
tion, helping stagger busy network links.

• For memory management (§IV-C), RB2 builds an efficient
memory subsystem using many classical optimizations to
achieve higher performance. Specifically, RB2 integrates:
(1) a zero-copy mechanism to eliminate the additional
memory copy introduced by the middle layer; (2) cache-
friendly structures to preserve cache efficiency; (3) huge
pages to reduce TLB misses; and (4) NUMA-aware memory
allocation to mitigate cross-core overheads.

We build a prototype of RB2 and compare it with three
SOTA RDMA-based DRBs. For small messages (64 B), RB2

achieves 2.5×-7.5× the throughput of existing DRBs and
maintains comparable tail latency. For large messages (1 MB),
the throughput of RB2 is not only 1.8×-8.5× that of clas-
sical DRBs, but its tail latency is only 6%-23% of theirs.
We further illustrate the ease-of-use benefits of the DRB
abstraction by integrating RB2 with three real applications: a
network function, a database system, and an HTTP server. Our
experiments demonstrate that with the aid of RB2, different
encapsulations can concentrate on high-level communication
semantics and application-related features, thus reducing the
burden of performance optimization.

II. PROBLEM

Basic concepts of RDMA. RDMA allows applications to
directly access memory on remote hosts. This provides low
latency, high throughput, and efficient CPU consumption.
To achieve these performance gains, RDMA offloads several
layers of the network stack to the RDMA NIC (RNIC). That
is, RDMA requests are sent directly to the RNIC bypassing the
kernel and are served by the remote RNIC without interrupting
the CPU. To utilize the benefits, the host must first register a
memory region (MR) to execute RDMA requests. Then, the
host issues an RDMA request over a queue pair, consisting of
a send queue (SQ) and a receive queue (RQ). Each queue pair
is associated with a completion queue (CQ). By polling the
CQ for the presence of the corresponding CQ element (CQE),
the host can determine the completion status of an RDMA
request. The RNIC receives the RDMA requests via PCIe.

Motivation. The low-level abstraction of RDMA hinders the
migration of existing applications to the RDMA environment,
despite its potential for superior performance. Specifically,
modern distributed applications are developed atop high-level
communication abstractions like socket, RPC, and others.
Conversely, RDMA provides a low-level abstraction that is
close to hardware devices, with various configuration options
bewildering to software developers [26]. Therefore, developers
have to properly select different RDMA requests and carefully
tune configurations to exploit the performance improvement
within their specific scenarios.

head

tail

Receiver reads here

Sender writes here

Fig. 1. Logical view of DRBs.

Recent years have witnessed numerous efforts to narrow
the gap between the RDMA abstraction and what most appli-
cations desire. They encapsulate the RDMA abstraction into
high-level ones, including socket-like API [1]–[4], RPC library
[5]–[13], MPI library [14]–[20], and other abstractions [21]–
[24]. However, there is no one-size-fits-all best approach, as
different applications favor distinct abstractions.
Middle layer: distributed ring buffer (DRB). Observing that
many high-level encapsulations (e.g., [1], [14], [21], [27], [28])
are built atop the distributed ring buffer (DRB) inspires us
to design a high-performance RDMA-based DRB. This DRB
serves as a middle layer between high-level abstractions and
underlying low-level RDMA interfaces, effectively narrowing
this gap. In a nutshell, a DRB is a circular space that can
be accessed by a sender and a receiver, as shown in Fig. 1.
The receiver maintains a head pointer that indicates the
address of the next message to be read within the message
region, and the sender keeps a tail pointer that denotes
the address where the next message will be written into the
free region. The advantages of DRBs are threefold. First,
the DRB abstraction sufficiently hides the details of native
RDMA APIs. Second, it can easily be encapsulated into many
application-layer systems, such as socket, MPI library, and
RPC library. Finally, the inherent simplicity of DRB enables
the easy application of numerous performance optimization
techniques. Here, we disregard DRBs with multiple senders
and receivers due to their excessive pointer synchronization
overheads. Such scenarios can easily be constructed using
multiple DRBs with a single sender and receiver.

III. RB2 OVERVIEW

In this paper, we propose an RDMA-based DRB, namely
RB2. To reach optimal performance, we explore the design
space of RDMA-based DRBs (see §III-A) to combine the most
performance-beneficial design choices for RB2 (see §III-B).
However, it is non-trivial to preserve RDMA performance
when applying RDMA to the distributed operations of DRBs.
We identify three design challenges during the integration (see
§III-C) and present our solutions to address them in §IV.

A. Basic Design Space of RDMA-based DRB

Table I compares different design choices of state-of-the-art
RDMA-based DRBs (i.e., [1], [14], [21], [27]). We first discuss
the basic design choices (C1-C5) to constitute the fundamental
structure of RB2 in this section.
C1: RDMA verbs. RDMA provides two primary categories
of communication verbs (i.e., one-sided and two-sided verbs),
bringing multiple different combinations. Specifically, two-
sided verbs include SEND and RECV, which require CPU
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Table I. Design space of RDMA-based DRBs.
RDMA-based DRBs MVAPICH [14] FaRM [21] SocksDirect [1] L5 [27] RB2

Basic Design Choice
C1: RDMA verb WRITE WRITE WRITE WRITE WRITE

C2: Transport mode RC RC RC RC RC
C3: Data structure linked list big array big array big array big array
C4: Data structure maintenance both receiver only both both both
C5: Message layout slot-to-slot back-to-back back-to-back back-to-back slot-to-slot

Pointer Synchronization and Message Transmission
Head synchronization active push lazy push lazy push lazy push lazy push

Tail synchronization poll message poll message poll RDMA CQ (CQE
generated by WRITE_IMM) write twice write twice

Batching of sending messages Ë adaptive batching

Memory Management
Zero copy socket-level Ë

Cache-friendly structure Ë

NUMA-aware allocation Ë

Huge page Ë Ë

involvement at both the sender and receiver. Two-sided verbs
require flow control to ensure that the RECV verbs are al-
ways posted when a message comes. One-sided verbs include
WRITE, READ, and atomic operations, which are executed
by the RNIC bypassing the remote CPU. Thus, one-sided
verbs offer lower latency and higher throughput than two-sided
verbs [24]. Some systems employ both verb types for different
messages to combine their advantages (e.g., [9], [11], [13],
[14]), although this also introduces the shortcomings of both
verb types. Alternatively, some systems only use one type of
RDMA verbs for communication (e.g., [1], [5], [6], [12], [21],
[29]), simplifying the communication logic.

C2: RDMA transport modes. RDMA provides different
transport modes for reliability and scalability concerns, in-
cluding reliable connection (RC), unreliable connection (UC),
and unreliable datagram (UD). RC assures reliable packet
delivery but suffers poor scalability when the number of
connections increases. UC only supports one-to-one unreliable
connections and does not support the READ verb. Conversely,
UD can communicate with multiple remote hosts using a
single queue pair, reducing the memory overhead of RNICs
and thereby enhancing scalability. However, UD demands
applications to (i) only use two-sided verbs with high CPU
cost and (ii) manage re-transmissions and congestion control.
Most previous studies select RDMA transport modes between
RC (e.g., [1], [10], [12], [21]) and UD (e.g., [6], [11], [18],
[22]) based on their scalability requirements.

C3: Data structure. The data structures for building DRBs
include linked lists and arrays. For linked list implementation,
its benefit is that there is no need to handle boundary cases in
array-based realization (i.e. a message crosses separate chunks
at both the tail and head of the array). However, in contrast to
the array-based realization, the spatial locality of a linked list
is poor, which can easily cause TLB misses. Therefore, most
DRBs (e.g., [1], [21], [27]) adopt a big array to realize the
ring buffer, and only MVAPICH [14] uses a linked list.

C4: Data structure maintenance. Since DRB is a distributed
abstraction, it is significant to decide the location of the DRB
structure. In particular, the DRB structure can be maintained

(1) solely on the receiver side or (ii) on both the sender
and receiver sides. In the first case (e.g., [21]), the sender
directly WRITEs the message to the remote buffer. This
blocks the sender when writing messages to the remote buffer
and precludes the batching of multiple small messages for
performance enhancement. In the second case (e.g., [1], [14],
[27]), the sender maintains an additional copy of the ring
buffer. This enables the execution of non-blocking operations
and facilitates higher throughput by leveraging batching.
C5: Message layout. The layout of messages within the
DRB tradeoffs between memory utilization and cache-friendly
access. There are two types of message layouts: back-to-back
and slot-to-slot. For back-to-back layout (e.g., [1], [21], [27]),
messages are stored continuously, which maximizes memory
utilization. In contrast, for slot-to-slot layout (e.g., [14]), the
ring buffer memory is segmented into several fixed-length
slots. Each slot can store only one message, but one message
may span multiple continuous slots. In this way, the ring
buffer can ensure cache-friendly access at the expense of lower
memory utilization due to memory fragmentation.

B. Basic Design Choices of RB2

RDMA-related design choices. We adopt the one-sided verb
WRITE (C1) over RC (C2) for the following three reasons.
First, considering performance, we select one-sided verbs
(unsupported in UD) for better performance. Second, in terms
of abstraction, our objective is to preserve the simplicity of
the DRB abstraction and avoid introducing additional modules
(e.g., reliability guarantees). Finally, for scalability, recent
advancements in both software [5], [29] and hardware [30]
have demonstrated that RC can also achieve high scalability.
Basic structure. We prioritize performance factors when mak-
ing design decisions for the basic structure. Fig. 2 shows the
layout of RB2. RB2 maintains two big circular arrays (C3) to
maintain spatial locality, one for the receiver and the other for
the sender (C4). This arrangement conveniently facilitates the
application of a batching mechanism for enhanced throughput.
We divide the buffers into N continuous slots of equal size
(C5) to align the cache line. Both buffers are registered as MR
for remote RDMA operations.
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esc_tail (etail)

local_head (lhead)

synced_tail (stail)

synced_head (shead) head

local_tail (ltail)

(a) sender (b) receiver
Fig. 2. RB2 overview.

Pointers. Fig. 2 shows that the sender manages four pointers
and the receiver maintains three pointers in RB2. Every pointer
points to a concrete slot, which can only be advanced. The
definitions of head and tail pointers remain consistent with
those in the logical view (see §II), pointing to the next slot to
be read and written, respectively. We define “head=tail”
as the empty status and “(tail+1)%N=head” as the
full status. The local_head and local_tail point-
ers are caches of head and tail on the opposite side.
Here, the pointer synchronization in RB2 indicates updat-
ing the local_head/local_tail by the remote latest
head/tail. They can avoid frequent pointer synchronization
every time the sender writes or the receiver reads a message.
The slots between the tail and local_head are the
free region of the sender. The slots between the head and
local_tail are the message region of the receiver.
Basic batching. The synced_head and synced_tail
pointers are used to apply batching mechanism in RB2.
The slots between synced_tail and tail are batched
messages. When the number of batched messages meets the
threshold, the sender transfers all the batched messages to
the receiver, synchronizes the latest tail to the remote
local_tail, and moves the synced_tail to the current
tail. Likewise, the slots between synced_head and head
are processed messages. After processing a certain number of
messages, RB2 synchronizes the latest head to the remote
local_head and points the synced_head to the current
head. We discuss the usage of esc_tail in the adaptive
batching of RB2 (see §IV-B).

C. Challenges

Although we make basic design choices for RB2 that are
optimal for performance in §III-B, the most significant perfor-
mance bottleneck of DRBs stems from distributed operations
(i.e., pointer synchronization and message transmission). We
discuss three challenges to preserve the performance benefits
of RDMA as much as possible (one for pointer synchroniza-
tion and two for message transmission).
Challenge 1: Pointer synchronization. Pointer synchroniza-
tion is essential for DRBs to function properly and has
profound implications for performance. In particular, head
synchronization releases the processed message region to the
free region, which is critical to avoid blocking the sender.
Moreover, tail synchronization must occur promptly after
message transmission, assuring that the receiver can read the
complete message immediately. There are various methods to

synchronize pointers (details in §IV-A). However, the influence
of different combinations of head and tail synchronization
methods on the overall performance of the DRB is unclear.
In addition, RB2 utilizes the batching mechanism to avoid
frequent pointer synchronization (see §III-B). The integration
with different synchronization combinations and the batching
mechanism makes this design even more challenging.
Challenge 2: Batching mechanism. Although batching can
increase throughput and reduce pointer synchronization fre-
quency, the common fixed batching mechanism still imposes
adverse effects on performance. First, the bandwidth resource
between the sender and receiver is underutilized due to the
waiting time for the number of batched messages to reach the
threshold. Second, the fixed batching threshold cannot adapt
to dynamic conditions (e.g., network congestion).
Challenge 3: Memory management. RB2 raises challenges
for memory management as a high-performance middleware.
That is, the lifecycle of a message may span multiple threads,
including RB2, upper-layer encapsulation, and the application.
On the one hand, RB2 incurs frequent inter-thread data trans-
fer, which rarely occurs in previous network stacks. On the
other hand, the multi-core execution amplifies the cache misses
and complicates NUMA allocation.

IV. RB2 DESIGN

We elaborate on the key designs of RB2 in this section.
For Challenge 1, we perform a micro-benchmark, comparing
different combinations of pointer synchronization methods
to discern the optimal design in §IV-A. For Challenge 2,
we propose an adaptive batching mechanism in §IV-B. For
Challenge 3, we adopt many optimizations to build an efficient
memory subsystem in §IV-C.

A. Micro-benchmark for Pointer Synchronization

Revisiting Challenge 1, the integration of different pointer
synchronization combinations along with the batching mech-
anism makes it extremely difficult to identify the optimal
solution for the overall performance. To tackle it, we first
elaborate on potential combinations and then proceed with a
micro-benchmark to figure out the best design.
Pointer synchronization methods. Table I summarizes exist-
ing methods to synchronize head and tail. Here, we detail
these methods and explore their integration with batching.
• Head synchronization. There are two methods to synchro-

nize the head: (1) the sender pulls the latest head from
the receiver; and (2) the receiver pushes its head to the
sender. For batching integration, both methods delay the
synchronization operation according to a threshold (e.g., the
number of released messages, a time interval, etc.), namely
lazy synchronization (e.g., [1], [21], [27]). On the contrary,
we refer the basic implementation without batching to active
synchronization (e.g., [14]).

• Tail synchronization. There are three methods based on the
one-sided verb to synchronized tail.
(1) Poll CQ: The sender employs the WRITE_IMM verb (a
variant of WRITE that can generate CQE on the receiver)
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Fig. 3. Micro-Benchmark for different pointer synchronization combinations with batching mechanism.

to transfer messages, so that the receiver can poll CQ
to detect the transmission completion and then updates
its local_tail (e.g., [1]), referred to “poll CQ”. For
batching integration, the sender sets the immediate value in
WRITE_IMM to the number of batched messages, allowing
the receiver to adjust local_tail accordingly. In this
method, the receiver needs to read the CQE from CQ for
each incoming message and then update its local_tail,
taking up extra CPU load on the receiver.
(2) Write twice: The sender transmits the message content
by the first WRITE and then synchronizes the latest tail to
the remote local_tail by the second WRITE, referred to
“write twice” (e.g., [27]). The ordered execution of RDMA
verbs [31] guarantees that the message transmission ends
before the pointer synchronization. For batching integration,
the sender transfers multiple batched messages via the first
WRITE and advances the tail via the second WRITE.
In this method, two WRITE requests are issued for each
message, which incurs significant bandwidth overhead.
(3) Poll message: The receiver confirms the completion
of the message transmission by polling a non-zero value
at the last byte of the message and then updating its
local_tail, referred to “poll message” (e.g., [14], [21]).
Here, the receiver locates the last byte according to the
message length which resides at the beginning address of the
next arriving message. Note that the receiver must explicitly
zero out the memory of processed messages in this method.
However, this method relies on a front-to-back write order of
the WRITE verb, which is not guaranteed in all RNICs. For
example, RNICs in [11], [14], [21] use sequential writing,
while RNICs in [1], [32], [33] take out-of-order writing.
Thus, we do not consider this method in RB2.

Setup. In summary, there are two methods for synchronizing
head (lazy push and lazy pull) and tail (poll CQ and
write twice), respectively. To evaluate the overall influence
on the performance, we combine these design choices pair-
wise, yielding combinations denoted as Pull+CQ, Push+CQ,
Pull+WT, and Push+WT. We use an identical testbed as in
§V. We divide the ring buffer into 128 slots, in which the
slot size is equal to the message size. We vary the message
sizes from 64 B to 1 MB and set the batching threshold to 16.
We push and pull the head via the WRITE and READ verbs,
respectively. For throughput, we send 40 GB of data for stress
testing. For latency, we use a ping-pong application to measure
the round-trip time as the latency metric. We turn off batching
for transferring data messages to achieve the best latency for
latency-sensitive scenarios, but we still reserve lazy push/pull

for head synchronization (no impact on data transmission).

Results for throughput. Fig. 3(a) shows the throughput of
different combinations. The Push+WT and Push+CQ achieve
higher throughput than the combinations that pull head, par-
ticularly evident for small messages (256 B∼4 KB). It should
be noted that the throughput for 64 B messages using Push-
based methods exceeds that of Pull-based methods by 35.9%
to 51.7% (not apparent in the figure). The reason is that
the Pull-based methods introduce more control logic to the
sender, increasing both CPU overhead and outgoing RDMA
requests. Push+CQ and Push+WT achieve roughly equivalent
throughput except for 1 KB and 2 KB messages. Thus, we tend
to select the combinations that use the push method so far.

Results for latency. Fig. 3(b) and 3(c) illustrate the average
latency and 99.9% tail latency, respectively. For average la-
tencies of messages smaller than 32 KB, Push+CQ is slightly
higher (10µs to 16µs) than the other combinations. For tail
latency, Push+CQ is significantly higher and more volatile than
the remaining combinations for messages smaller than 128 KB.
This is a counterintuitive result as we expect that poll CQ that
uses a single verb should outperform write twice which issues
two WRITE verbs. However, the actual results contradict this
expectation. The key reason behind this outcome lies in the
extra CPU consumption of the receiver. In particular, given
the high PPS (packets per second) rate for small message
transmissions, the receiver has to process numerous CQEs
per second and must ensure that there are sufficient elements
in RQ to process the arriving WRITE_IMM requests. As a
result, the CQ polling and RQ replenishing incur high CPU
overhead on the critical path of message transmission and
pointer synchronization, which results in erratic tail latency.

Design choices of RB2. According to the micro-benchmark,
RB2 selects the lazy push and write twice to synchronize the
head and tail, respectively.

B. Adaptive Batching

To address Challenge 2, RB2 proposes adaptive batching,
which consists of synchronization-ahead transmission and
elastic threshold.

Synchronization-ahead transmission. To fulfill the idle band-
width brought by the batching mechanism, RB2 proposes
synchronization-ahead transmission. Its key idea is to decouple
the two WRITE verbs of “batched write twice” into slot trans-
mission (1st WRITE) and pointer advancement (2nd WRITE),
which are guided by different batching thresholds, respectively.
Here, we denote the thresholds of pointer advancement and
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Algorithm 1 RB2 workflow.

Buffer: RBS for the sender, RBR for the receiver
Sender Pointers: tail, synced_tail, esc_tail, local_head.
Receiver Pointers : head, synced_head, local_tail.
Thresholds pointer advancement: α, slot transmission: β, lazy push: γ
Notes:

I. All pointer arithmetics are performed in the context of modulo slot count.
II. RB[a:b] means all slots from a to b, inclusive and clockwise circularly.

1: function WRITEMSG(msg)
2: if (tail+1) % N == local_tail then
3: return Error-Full-RB
4: RBS [tail] = msg
5: tail++
6: if tail-synced_tail ≥ α then ▷ Pointer Advancement
7: WRITE RBS [esc_tail:tail-1] to the same slots in RBR

8: esc_tail = tail
9: synced_tail = tail

10: Try to poll WRITE CQE of last tail advancement
11: if Polling Success then ▷ elastic threshold
12: Synchronize tail to local_tail

13: else if tail-esc_tail ≥ β then ▷ Slot transmission
14: WRITE RBS [esc_tail:tail-1] to the same slots in RBR

15: esc_tail = tail
16: return WriteSlot SUCCESS

17: function READMSG(void* msg)
18: if head == local_tail then
19: return Error-Empty-RB
20: *msg = RBR[head]
21: head++
22: if head-synced_head ≥ γ then ▷ Lazy push
23: Synchronize head to local_head
24: synced_head = head
25: return ReadSlot SUCCESS

slot transmission as α and β, respectively. By setting α > β,
RB2 transfers several groups of small batched messages prior
to pointer advancement, effectively utilizing idle bandwidth.
• Slot transmission: RB2 treats the slots between esc_tail

and tail-1 as a group of batched messages to be trans-
ported. Each time the sender writes a new message, RB2

checks whether the number of batched slots (tail −
esc_tail + 1) reaches β. If the condition is met, RB2

issues a WRITE request to transfer the batched slots and
subsequently moves esc_tail to the current tail.

• Pointer advancement: RB2 utilizes synced_tail to
track the number of transferred messages since last pointer
synchronization. Each time the sender writes a new message
to RB2, it checks tail − synced_tail ≥ β. If the
condition holds true, the sender (i) issues a slot transmission
to flush the untransmitted batched messages; (ii) WRITEs
its tail to the remote local_tail; and (iii) advances
synced_tail to the slot pointed by the tail.

Elastic threshold. RB2 proposes the elastic threshold to
adapt to the busy network. Suppose a scenario where RB2

reaches the threshold of pointer advancement again when the
previous WRITE to advance local_tail is still in flight.
This implies that the WRITE requests of slot transmission
prior to the newly triggered pointer advancement are not yet
completed. There are two common reasons for this scenario:
(i) the message generation rate is extremely high; and (ii)

the network is under congestion. Hence, we utilize this sce-
nario as an indicator of network busyness. RB2 defers the
pointer advancement to continue the slot transmission until
the previous pointer advancement is completed. In essence,
we temporarily augment the batching threshold of pointer
advancement. Our approach, which only generates CQE for
WRITE of pointer advancement, is more efficient compared
to the adaptive batching of SocksDirect [1], where the sender
generates CQE for every issued WRITE of sending messages
to track the number of requests in flight.

Putting it together. RB2 integrates the above designs into
WRITEMSG and READMSG functions (Algorithm 1), which
are provided to the sender and receiver, respectively.
• Sender. The sender invokes WRITEMSG to write a message.

If the ring buffer is full, the write operation fails, and the
function instantly returns (lines 2-3). Otherwise, RB2 copies
the message into RBS[tail] (line 4) and advances the
tail (line 5). Next, RB2 checks whether RB2 reaches the
pointer advancement threshold (line 6). If so, the sender
first triggers a slot transmission for untransmitted messages
(lines 7,8), points synced_tail to the current tail (line
9), and then tries to synchronize the tail (lines 10-12).
Here, the sender only WRITEs its tail to the remote
local_tail when the previous tail synchronization is
done (i.e., elastic threshold). Otherwise, the sender contin-
ues to check whether RB2 reaches the slot transmission
threshold (line 13). If so, the sender WRITEs the messages
between esc_tail and tail to the receiver and advances
esc_tail to the current tail (lines 14,15), which is
the synchronization-ahead transmission. At last, we return a
success signal (line 16).

• Receiver. The receiver invokes READMSG to read a mes-
sage. If the ring buffer is empty, the read operation fails, and
the function returns immediately (lines 18,19). Otherwise,
we copy the message in RBR[head] to the user buffer
(line 20) and then advance head (line 21). If the increment
from head to synced_head reaches γ (i.e., the threshold
of lazy push), the receiver pushes its head pointer to the
remote local_head and points its synced_head to the
position of the head (lines 22-24). Finally, we return a
success signal (line 25).

Example. We provide an example to illustrate the key designs
in RB2. We configure RB2 as follows: N = 8, α = 4,
β = 2, γ = 2. Fig. 4 shows the status of RB2 after executing
a sequence of operations, i.e., write one message, read two
messages, and write two messages (see Fig. 2 for the shorthand
of the pointer names). We show stable statuses when the
current execution of WRITEMSG and READMSG is finished.
• Slot transmission (Fig. 4(a)→ 4(b)): The sender writes a

message and advances its tail. Then slot transmission is
triggered, i.e., two blue slots are transmitted to the receiver
ahead of the pointer synchronization.

• Lazy push (Fig. 4(b)→ 4(c)): The receiver reads two mes-
sages. The first READMSG triggers lazy push to synchronize
the head, while the second one only advances the head.
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Fig. 4. Examples. (Colored slots are non-empty. Grey slots
haven’t been sent to the receiver. Blue slots are sent but can’t
be read due to unsynchronized local_tail. Orange slots
are processed, but unsynchronized to local_head.)

• Pointer advancement (Fig. 4(c)→ 4(d)): The sender writes
two messages, which triggers pointer advancement to syn-
chronize the tail. Two new slots are sent to the re-
ceiver, and local_tail is advanced by four. Also,
synced_tail and esc_tail are advanced to the slot
pointed by the current tail.

C. Memory Management

Zero-copy. RB2 incorporates zero-copy to eliminate the addi-
tional memory copy introduced by the middle layer. For the
receiver, users provide a callback function to RB2 to handle the
received data. Each time the receiver successfully reads a new
message, this function is automatically invoked. RB2 facilitates
this process by passing the address of the received message to
this function as an argument. For the sender, the upper layer
application furnishes a function that enables direct insertion
of the data into the RB2 buffer. RB2 calls this function and
passes the address of slots in the local buffer as an argument.

Cache-friendly structure. We carefully tune the structure and
variables of RB2 to maximize the benefits offered by the CPU
cache. First, RB2 holds each pointer in a dedicated cacheline
and frequently accesses them to keep them in the cache instead
of evicting them to memory. Second, we align the starting
address of each message to the cache-line boundaries, by
setting the slot length to a multiple of cache-line length (64 B
by default). Here, cache-line alignment is significant to the
performance. This also explains why we take a slot-to-slot
layout to store messages (C5), which can further prevent false
cache sharing. For example, if the ring buffer structure is
unaligned, a 128 B message crosses three cache lines. When
the RNIC receives the WRITE request for this message, it
launches a DMA to copy this message to the main memory,
which invalidates the three cache lines. This inevitably affects
the cache performance for the adjacent slots.

NUMA-aware allocation. RB2 implements NUMA-aware
allocation to further mitigate the performance impact of mid-
dleware. In particular, our NUMA-aware allocation ensures
that (1) the RB2 process is bound to the CPU core of the
NUMA node to which the RNIC belongs; (2) the RB2 buffer

is allocated in the physical memory of the same NUMA node.
RB2 also prompts users to bind the high-level application
processes to CPU cores of the same NUMA node. In this way,
RB2 can reduce some memory access latency and eliminate
performance fluctuations.
Huge page. RB2 employs huge pages and allocates buffers
on contiguous pinned memory. On the one hand, we aim to
reduce the TLB misses. Although the memory access pattern
of RB2 is regular, the patterns of upper-layer applications are
unpredictable, which is easy to cause numerous TLB misses.
On the other hand, we aim to reduce the cache misses on
the RNIC. Here, the RNIC caches the virtual to physical page
mappings of the registered MR in its memory translation table.
As the on-chip memory of RNIC is small, it easily causes
cache misses in the memory translation table. Thus, we use
huge pages to reduce the number of memory mapping entries.

V. EVALUATION

A. Setup

Testbed. We evaluate RB2 on two servers (one sender and
one receiver) with dual 12-core 2.3 GHz Intel Xeon Gold 5118
CPUs, 128 GB memory and a 100 Gbps Mellanox ConnectX-5
NIC. Each server runs on Ubuntu 18.04 with a 4.4.0 kernel.
The NICs are supported by driver MLNX OFED 5.1-0.6.6.0
and firmware 16.28.2006. The servers are interconnected with
a Mellanox MSB7890-ES2F InfiniBand switch.
Configurations. We compare RB2 with FaRM [21], SocksDi-
rect [1], and L5 [27]. We set the size of ring buffers as 128
times the message size. For FaRM, its original design cannot
work on our testbed because it requires the RNIC with front-
to-back write order, which our RNICs cannot support. We
realize a modified version to address the issue by combining
“poll message” and “write twice”, where the first writes the
message data and the second writes the message length. For
L5, we use its open-source version [34]. For SocksDirect (SD),
we implement its DRB based on its published design, in which
the maximum number of inflight messages is ten. For RB2, we
use the following configuration: α = 32, β = 16, γ = 32. In
addition, we also present the performance of raw WRITE by
using perftest (without other processing logic) to observe
the additional processing overhead introduced by RB2.
Methodology. We measure both throughput and latency. For
throughput, we send 40 GB of data for stress testing. For
latency, we build a single-thread ping-pong application to
avoid overload impacts. We track round-trip time as the latency
metric using software timestamps, including average latency
and 99.9% tail latency. We perform 100 K rounds of ping-pong
to warm up and then 300 K rounds of ping-pong to collect data.

B. Experiments

(Exp#1) Throughput. Fig. 5 compares the throughput under
different message sizes (64 B to 1 MB). The throughput of RB2

is much higher than other DRBs. Compared to raw WRITE,
RB2 achieves more than twice throughput for small messages,
since our batching for small messages significantly improves
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Fig. 5. (Exp#1) Throughput.
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throughput. For large messages, the throughput results of RB2

and raw WRITE are almost the same (close to 90 Gbps),
because our zero-copy eliminates the biggest performance
bottleneck. SocksDirect achieves similar throughput to raw
WRITE for small messages due to its batching policy, but its
memory copy overhead becomes a bottleneck for large mes-
sages. Since L5 and FaRM are not optimized for throughput,
they have the lowest throughput for small messages. Even
for large messages, the throughput results of L5 are always
around 10 Gbps, which is caused by the additional bandwidth
overhead of writing twice without batching.

(Exp#2) Latency. Fig. 6 compares the latency under different
message sizes (64 B to 1 MB). For small messages, the average
latency results of RB2 acceptably low, which are around 4µs
and very close to that of SocksDirect (Fig. 6(a)). Here, our
tail latency results for small messages are 6µs lower than
SocksDirect (Fig. 6(c)). For large messages, RB2 achieves
comparably low latency to the raw WRITE and much lower
latency than other DRBs due to our zero-copy optimization
(Fig. 6(b) and 6(d)). Since L5 is designed to optimize the
latency for messages no larger than 64 B, it achieves the
best average latency (2.5µs) for 64 B messages, close to raw
WRITE. However, its tail latency gets extremely high for larger
messages, e.g., 4 ms for messages of 1 MB.

(Exp#3) Multi-core scalability. Fig. 7 evaluates the scalability
of RB2. We bind each thread to a single core and transfer
40 GB of data with 64 B messages. We vary the number of
threads from one to eight. Among the four DRBs, RB2 has
the best scalability. As the number of threads increases, the
throughput can increase almost linearly, and the tail latency
maintains the lowest (smaller than 7µs). This is because RB2

adopts NUMA-aware allocation and a cache-friendly structure
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Fig. 7. (Exp#3) Multi-core scalability.

Table II. (Exp#4) Impact of optimizations.

Optimization Throughput (Gbps) Latency (µs)
small large small large

M1 = Full-optimized RB2 39.1 85.3 4.0 189
M2 = M1 - all batching policy 12.8 85.3 4.1 189
M3 = M1 - sync-ahead transmission 33.2 85.3 4.1 189
M4 = M1 - elastic threshold 24.4 85.3 4.1 189
M5 = M1 - lazy push 33.1 85.3 4.1 189
M6 = M1 - zero-copy 33.9 46.8 4.0 713
M7 = M1 - cache friendliness 36.0 60.3 4.1 265
M8 = M1 - huge page 39.0 85.3 4.1 189
M9 = M1 - NUMA-aware allocation 36.1 85.3 4.8 189

to alleviate the interaction between different ring buffers.

(Exp#4) Impact of optimizations. This experiment examines
the benefits of different design choices and optimizations of
RB2. We measure the performance with both small messages
(512 B) and large messages (1 MB). We consider RB2 with
full optimizations as the baseline (M1). Then we disable
one optimization from the baseline to generate new versions
denoted by M2-M8. For the test without NUMA-aware allo-
cation (M8), we manually bind the testing thread to the wrong
NUMA node to simulate the worst case.

Table II shows the impact of each optimization. Without
all the batching mechanisms (M2), the throughput of small
messages drops by 67%. Among each single batching policy
(M3-M5), the elastic threshold (M4) contributes the highest
throughput benefits. Zero-copy (M6) can eliminate the cost of
copying, which is expensive, especially for large messages.
Cache-friendly structure (M7) has significant impacts on the
throughput. Without it, the throughput of small and large
messages decreased by 8% and 29%, respectively. For huge
pages (M8), since we do not allocate too many pages in our
experiment, its performance benefits are not evident in this
experiment. Note that it can benefit upper-layer applications
with large memory consumption. NUMA-aware allocation
(M9) can improve the performance for small messages because
the PPS for small messages is much higher, incurring more
memory accesses. In addition, we observe that the main
performance bottleneck for transmitting large messages is
message copying (M6 and M7). Considering the performance
gains and the ample memory resources of modern servers, the
increased memory footprint of RB2, attributed to slot-to-slot
layout and cacheline alignment, is regarded as acceptable.

C. Case Study

We evaluate RB2 under three different applications, cover-
ing the most common RDMA scenarios.
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(Case#1) Network Function. We evaluate the performance
of network function (NF) realized by DRB. We can easily
implement different NFs based on a DRB because the FIFO
behavior of NFs matches that of DRBs. In this case, we
implement a measurement NF which counts the traffic. We
use public traffic traces CAIDA 2019 [35] for testing. For each
packet, we send its flow key, timestamp, sequence, and size
(40 bytes in total) to NF using DRB. We replay one-minute
traffic (30 M packets) and record the processing time. Fig. 8
shows that RB2 only requires 4.1 s, which is half the time
of L5 and SocksDirect and one-fifth the time of FaRM. The
benefits come from the high throughput of RB2 (see Exp#1).
(Case#2) Database. Fig. 9 compares the performance of
database systems realized by different DRBs. We use the
YCSB-C (read requests) benchmark [36] for testing. The sizes
of the request and response are 16 B and 128 B, respectively.
We generate 3 M requests and record the time cost. RB2 only
takes 1 second, which is half the time of L5 and SocksDirect
and a quarter of FaRM. Since both sizes of the request and
response are small, the results are consistent with Case#1. That
is, our batching mechanism contributes the most benefits.
(Case#3) HTTP server. We compare the performance of
HTTP servers implemented by different DRBs. A client sends
1 M requests using the GET. The server sends back a 1 KB file
for each request. The client waits for the file before sending
the next request. Since the HTTP server is latency-sensitive,
we turn off the batching mechanism. Fig. 10 shows the results.
RB2 achieves a similar QPS (138 K) to SocksDirect (137 K)
and the lowest tail latency (7µs), which is 1.3µs lower than
that of SocksDirect. This is because (1) the socket-level zero
copy of SocksDirect improves its QPS, and (2) RB2 does not
batch the generated requests.

VI. RELATED WORKS

According to existing systems (see Table I), RB2 can be
further encapsulated into the following high-level abstractions.
Socket-like API. Socket is the most widely used communica-
tion abstraction in modern applications. Many encapsulations
for socket-like API have been proposed since the inception
of RDMA. Sockets Direct Protocol (SDP) [2], [37]–[39] is

the first attempt in the industry, which implements the socket
semantics over the InfiniBand fabric. Both SDP and UNH EXS
[3], [40] adopt a similar design, where control messages are
transferred by two-sided RDMA verbs and data messages are
transferred via one-sided verbs. RSocket [4] and SocksDirect
[1] simplify the above design, which uses one-sided verbs to
transfer both data messages and control messages.

MPI library. MPI is the dominant parallel programming
model in the high-performance computing area. Since the
inception of the first RDMA-based MPI library MVAPICH
[14], numerous works emerge to address its scalability is-
sue. ACM [15] proposes adaptive connection management
to dynamically control the establishment of RC. MVAPICH-
SRQ [16] utilizes shared RQs to achieve scalable buffer
management. MVAPICH-UD [18] uses UD to reduce the
queue pair memory usage and supports zero-copy protocol
in [20]. Open MPI [19] integrates the above optimizations
to provide a new open-source library. MVAPICH-Aptus [17]
takes a multi-transport design that uses both the RC and UD
for messages with different sizes or types.

RPC library. RPC is the cornerstone of modern distributed
systems. Existing systems adopt different combinations of
RDMA verbs to transmit RPC requests and responses. First,
DaRPC [10] and FaSST [6] take two-sided verbs over RC
and UD for communication, respectively. Second, ScaleRPC
[29] and FLOCK [5] use the one-sided WRITE, while RFP
[12] applies WRITE and READ to send requests and fetch the
results, respectively. Finally, many systems propose hybrid ap-
proaches. HERD [11] issues the requests via WRITE over UC
and returns the response using two-sided verbs over UD. AR-
gRPC [9] and X-RDMA [13] use two-sided verbs for small
messages. But for large messages, AR-gRPC takes READ
while X-RDMA first wakes up the receiver via two-sided
verbs and then transmits data messages via one-sided verbs.
HatRPC [7] supports five modes to RDMA communication
modes, which are selected by its hierarchical hint scheme.
FaRM [21] provides an event-based programming model over
a distributed shared memory abstraction.

VII. CONCLUSION

RB2 is a high-performance RDMA-based DRB that serves
as a middle layer between the low-level RDMA interface and
the high-level encapsulations or applications. RB2 explores
the design space of RDMA-based DRBs to integrate the
design choices that are seemingly counterintuitive but offer
optimal performance improvements. RB2 proposes adaptive
batching and builds an efficient memory subsystem to optimize
performance. Experiments show the high performance of RB2

over three state-of-the-art DRBs.
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